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The dynamics of confidence affect a plethora of financial phenomena including liquidity hoarding.We present amultiagent model of a
financial network in which confidence dynamics are shaped by structural uncertainty—that is, the lack of knowledge about the
network of interbank cross-exposures. During a financial crisis, structural uncertainty makes it difficult for banks to assess the risk
of financial contagion and their own health. Under such conditions, banks are more likely to behave conservatively and quickly act
on information they receive from their local environment. A sudden financial shock, therefore, can be characterized by high-
intensity local impact on confidence. We find that such local impacts quickly spread throughout the network, causing more
damage than a shock that evenly affects all localities in the system; for example, a complete breakdown of the system occurs with a
higher probability. The results are explained analytically by linking system performance to the speed of decrease in confidence.

1. Introduction

The “freeze” of the interbank market in the recent financial
crisis denied financial institutions (banks, for short) access
to liquid assets when they needed them most. In late 2007,
the U.S. and European markets experienced simultaneous
runs on asset-backed commercial papers [1]. The second
large shock occurred in the fall of 2008 when failures of
AIG and Lehman Brothers set off defaults of money-market
funds (e.g., the Reserve Primary Fund), which subsequently
triggered runs on the repurchase agreement market. Banks
responded with precautionary liquidity hoarding, causing
interbank market to dry up [2, 3]. The resulting difficulty of
borrowing money and the increase in interest rates produced
a series of adverse consequences for financial and real sectors.
First, pressure to obtain liquidity through sales of long-term
assets led to fire sales that further deteriorated banks’ asset

positions. Second, facing the growing prospect of illiquidity,
banks struggled to maintain their lending activities. Third,
given that the price of money in interbank markets is a
benchmark for the interest rates in the economy, the real
sector experienced difficulty obtaining funding under reason-
able conditions. Together, these factors further aggravated
already existing symptoms of the crisis.

There are two common explanations for the interbank
market collapse: the increase in counterparty risk and
liquidity hoarding [4]. The uncertainty about the network
of cross-exposures between banks, also known as structural
uncertainty [5], however, made both of these factors more
effective. The fear of counterparty risk—a risk that a business
partner cannot meet its obligation—can be linked to the
subprime market crash that led a large fraction of banks
holding mortgage-backed securities to experience financial
difficulties. The resulting increase in liquidity demand and
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the reduction in the number of liquidity providers set off
basic conditions for banks to withhold liquidity from the
market—liquidity hoarding. Furthermore, structural uncer-
tainty made it difficult for liquid banks to assess the risk of
events farther in the network and identify risk-free parties.
For the same reason, liquid banks could not rule out the pos-
sibility of suffering a sudden loss through already existing
cross-exposures. In such a context, they were more likely to
anticipate increased liquidity needs in the future, as well as
the possibility of limited access to the interbank market.
The loss of confidence in the interbank market and liquidity
hoarding were hence the result of a number of interrelated
factors, but it was the structural uncertainty that made each
of them more consequential.

In this paper, we explored a model of a banking network
in which the confidence of banks is shaped by uncertainty
about the network of interbank lending. This is a realistic
assumption since the network of interbank cross-exposures
is not known due to the over-the-counter character of
interbank transactions. We found that when confidence is
sensitive to local information only, the probability of sys-
temic failures increases substantially.

We adopted the framework of Arinaminpathy et al. ([6];
hereafter the AKM model) in which a bank’s confidence is
modeled to reflect the severity of the financial situation in
the banking system. A bank’s confidence is directly linked
to its decision to roll over or withdraw previously established
interbank loans—the lower the confidence, the higher the
possibility of precautionary withdrawals. The model also
includes the effects of fire sales and asset price contagion, as
they are in a close relationship with market liquidity. Here,
we assumed that banks are responsive to information
received from their direct interbank counterparties but not
from the banks that are further away in the network. The
intuition is that in the face of structural uncertainty, banks
rely on actions that take place in their locality. As was done
in the AKMmodel, we also considered a case in which banks
receive information from all banks in the system, but we
made the information either noisy or delayed relative to the
distance information needs to travel in the network to reach
the receiver.

The remainder of this paper is organized as follows. We
start with the discussion of related literature in Section 2,
followed by the model of a banking network in Section 3.
Sections 4 and 5 are devoted to our model of uncertainty
and the application of initial shock(s) to the system, respec-
tively. In Section 6, we detail our simulation procedure; our
main results are presented in Section 7 and additional analy-
sis in Section 8. We end with the discussion in Section 9.

2. Related Literature

Our paper is related to the network models of financial
contagion [7]. Network approaches have proven useful for
understanding contagion processes in biological, social, and
financial systems (e.g., [8–12]). In financial systems in partic-
ular, individual institutions are linked to each other through
a complex system of interbank lending [13] and holdings in

common assets [14, 15]. Such a system lends itself naturally
to being modeled with a network approach.

Most models of financial networks have treated conta-
gion as being directly transmitted between institutions (e.g.,
[16–19]), leaving the mechanism of market panics largely
unexplored. One reason may be because the outbreak of
herding behavior is not well captured by a cascade that
spreads through the network of cross-exposures. Instead, it
is predominantly driven by a collective change in expecta-
tions, which does not exhibit simple cascade-like spreading
patterns. A simultaneous drop in banks’ confidence, for
instance, can be a mediator of collective withdrawal of liquid-
ity and fire sales. This is because the interbank market relies
on the collective confidence in its service as a safe resort in
case of unforeseen liquidity needs. Furthermore, the func-
tioning interbank market attenuates banks’ liquidity buffers
by allowing them to operate with minimal holdings of low-
profit liquid assets. Thus, the steady reduction in banks’
liquid reserves in the decades prior to the financial crisis
reflects the increasing market efficiency and the growing
confidence in its reliability (Figure 1). However, the recent
crisis demonstrated that such a scheme is not resistant to
large financial shocks, which proved to be capable of under-
mining the collective confidence. Taken together, these all
point to the importance of understanding of how confidence
decay spreads in the banking system.

Hansen and Sargent [20] studied the sensitivity of
beliefs to uncertainty, although they did not look at how
such beliefs spread in the financial system. Gai et al. [21]
introduced a network model of liquidity hoarding where
the propensity for precautionary withdrawals, a proxy of
the collective confidence, was exogenously decided. Such
a setting left the process of confidence loss out of consid-
eration. By contrast, in the AKM model [6], confidence
was endogenously determined as a function of the severity
of the financial situation in the interbank market but
with the unrealistic assumption that banks have complete
information about other banks in the system. This
implied that confidence shocks were well distributed
among all banks, leaving the impact of structural uncer-
tainty and heterogeneously distributed confidence in the
network unexplored.

Our paper is also related to the literature focused on the
relationship between liquidity hoarding and asset prices
(e.g., [4, 22–24]). For instance, Gale and Yorulmazer [4]
and Diamond and Rajan [24] showed that in certain
conditions, privately optimal decisions can lead to hoarding
behavior and fire sales. These authors also considered specu-
lative hoarding, when a liquidity shortage stimulates liquid
buyers to withhold liquidity in expectation of high returns
from potential fire sales. Nevertheless, the main difference
from our work here is that their studies were not concerned
with the complexity of interbank cross-exposures or accom-
panying structural uncertainty.

There have been several studies connecting different
sources of uncertainty to market liquidity. Caballero and
Krishnamurthy [25] argued that capital immobility and
liquidity hoarding can be explained by the reactions of
decision makers to the Knightian uncertainty embedded in
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the financial environment in the form of sudden events
and untested financial innovations. Routledge and Zin [26]
showed how derivative pricing under uncertainty produces
diverse effects on market liquidity. A link between uncer-
tainty and market complexity was tackled by Zawadowski
[27], who found that the layers of financial intermediation
amplify uncertainty about the availability of funding, causing
a cascade of liquidity withdrawals. However, all banks were
familiar with the underlying network of lending.

In a recent paper addressing the same problem as our
study, Caballero and Simsek [28] considered structural
uncertainty in a model of liquidity hoarding and fire sales.
They argued that ignorance about the underlying network
of interconnections, a dormant factor in normal times,
becomes relevant in a crisis when liquid banks have to
consider who will be next affected by the cascade of failures.
This shifts their preference toward keeping liquid assets
instead of investing long term, causing liquidity shortages
and fire sales. While sharing the assumption that banks
reliably know only information about their counterparties,
the Caballero and Simsek study differs from ours by assum-
ing that banks know the outline of the network of cross-
exposures. For simplicity, they also assumed that the banking
network forms a circular shape. In our model, the network of
interbank lending approximates features of real-world
banking networks, and its shape is not known to the banks.
Unlike the circular arrangement, the small-world feature of
real financial networks makes all banks relatively close to
each other [29], which has implications on the spread of
information and financial risk in the system.

3. Model of a Banking Network

In the AKMmodel, banks are connected by lending relation-
ships and holdings in common assets. Our analysis is focused
on a short-term horizon in which banks can decide to roll
over, shorten loan maturity, or terminate already established
lending contracts. Their decisions depend on their confi-
dence, which is expressed as a function of the level of assets
and interbank loans in the system. When the system faces
financial difficulties and bank defaults, the value of its assets
and interbank loans shrinks, lowering confidence. This in
turn leads to more preemptive actions of banks, putting

pressure on their counterparties and causing more defaults.
In this way, the model captures positive feedback between
the severity of the financial condition in the system and
individual behaviors of banks.

In addition to liquidity hoarding, two other contagion
mechanisms take place in the model. One relates to the prop-
agation of counterparty credit risk, which affects lenders when
borrowers are not able to repay their loans. The other is asset
price contagion, which occurs when liquidation of assets of
failed banks pushes the corresponding asset prices down. All
banks holding the affected assets suffer from the price drop,
which is modeled according to Cifuentes et al. [30]. Correla-
tions between assets are not included in our model.

3.1. Nodes and Edges. For simplicity, nodes or banks in the
network can only be large or small, where the size disparity
is fixed by the size ratio q q = large bank assets small bank
assets . Banks are represented as simplified balance sheets
with properties listed in Figure 2. The liability side con-
tains capital (also known as owner’s equity), retail deposits
(money in the accounts of banks’ customers), and interbank
borrowing (assets borrowed from other banks). The level of
capital represents the amount of asset loss that a bank can

1980 1990 2000 20101960 1970
Year

5

10

15

20

Li
qu

id
 re

se
rv

es
to

 as
se

ts 
ra

tio
 (%

)

Figure 1: Ratio of bank liquid reserves to bank assets in the United States (1960–2016), that is, the ratio of domestic currency holdings and
deposits with the monetary authorities to claims on other governments, nonfinancial public enterprises, the private sector, and other banking
institutions. The recent 2007–2008 financial crisis led banks to hoard liquidity. Source: the World Bank, retrieved from http://WorldBank.
com and http://NationMaster.com.
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Figure 2: A balance sheet representation of a bank (adapted
from [6]). a= total assets; γ= capital ratio; l = liquidity ratio; θ=
interbank loans-to-assets ratio; z = average number of incoming
and outgoing loans.

3Complexity

http://WorldBank.com
http://WorldBank.com
http://NationMaster.com


www.manaraa.com

withstand before becoming insolvent and going bankrupt
(insolvency and illiquidity are separately discussed in Section
5). Retail deposits are taken to be external to the system and
do not play an active role in the model. Interbank borrowing
represents loans received from other banks, and the number
of incoming loans represents the in-degree of an individual
node. On the asset side, there are n external asset classes
(investments in assets that are external to the banking sys-
tem), liquid assets (e.g., cash), and interbank lending (assets
lent to other banks). External asset classes are distributed
among banks from a fixed number of distinct asset classes
contained in the system (see next section). This means that
multiple banks will share the same asset class, which can lead
to asset price contagion—the drop in value of one asset class
will affect multiple banks. Liquid assets are a small fraction l
of the overall assets that banks keep in the most liquid form
to meet immediate needs. They are mostly composed of cash
or any cash equivalent, such as central bank reserves or high-
quality government bonds, which are easily convertible to
money. Finally, interbank lending corresponds to outgoing
loans to other banks in the system, thus giving rise to a
lending network, as described below. Parameters γ and θ
(Figure 2) determine the initial proportions of capital and
interbank loans in the total assets a, respectively. The balance
sheet’s parameters reflect the values observed in the banking
sector before the crisis [31]: the proportion of total assets
initially determined to be held in interbank loans θ = 0 2,
the proportion of total assets initially liquid l = 0 01, and
capital-to-asset ratio γ = 0 04.

3.2. Network. The network is a directed random graph with
N = 120 banks (Figure 3). The default value of the size ratio
q is 10 (The main pattern of results is insensitive to changes
of q and N as long as they are large enough.), which given
total number of banks results in a network with Nb = 11 large
and Ns = 109 small banks. The in-degree and out-degree of
banks are determined by a Poisson distribution with param-
eter z = 5 for small and q × z = 50 for large banks. That is,
small (large) banks on average have five (50) incoming and
five (50) outgoing loans. Each edge in the network is a loan
with direction from lender to borrower. The default value
of each single loan is normalized as 1. The maturity of inter-
bank lending is also simplified: a random half of interbank
loans are assigned to be “short-term” and the rest to be
“long-term” loans. The short-term loans can be withdrawn
immediately by a lender in a single decision, whereas long-
term loans have to be shortened first. The banks are also
interrelated by sharing the same external asset classes. These
relationships are the basis for the asset price contagion.
Small banks have 10, and large banks 20 external asset
classes ns = 10, nb = 20 . Given that on average 10 banks
share the same asset class (g = 10), this implies 131 distinc-
tive external asset classes G = Nbnb +Nsns /g .

The difference in the connectivity of large and small
banks and the random assignment of their connections result
in the core-periphery structure of the network. That is, large
banks with many links are densely interconnected—forming
the core, and small banks with few links are loosely intercon-
nected—forming the periphery. The resulting structure is

“shallow,” (This is in agreement with the core-periphery
structure of the global banking network [13]. Roughly speak-
ing, any two banks at the periphery are a few connections
away since they are linked via the well-connected core.)
meaning that the average path length in the network is
relatively short due to the well-connected core.

3.3. Confidence and Individual Health. Confidence C is the
first important determinant of a bank’s behavior. In the
AKM model, confidence is calculated as a function of A
and E, which are measures of solvency and liquidity of the
system, respectively:

C = AE,

A = 〠
N

i=1
Ai,

Ai =
ai

∑N
i=1a

0
i

,

E = 〠
N

i=1
Ei,

Ei =
ei

∑N
i=1e

0
i

1

At a given point in time, A denotes the total value of all
remaining assets in the system as a proportion of its initial
value; E is similarly the fraction of interbank loans not with-
drawn from the system; Ai and Ei are the remaining assets
and interbank loans of bank i as the proportion of initial
value of total assets in the system; ai and ei are the absolute
values of remaining assets and interbank loans of bank i;

Figure 3: Bankingnetworkwith 120banks. Thenode size isweighted
by its degree. Large banks are colored in light green, whereas small
banks are colored in dark green. The network is constructed using
the default values of the model parameters (Section 3.2) and has
a core-periphery structure: large banks with many links are
densely interconnected—forming the core, and small banks with
few links are loosely interconnected—forming the periphery.
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and a0i and e0i are the initial absolute values of assets and
interbank loans of bank i.

To calculate C as defined in the AKM model, and to take
any action, banks have to know the current and initial values
of assets and interbank loans of all banks in the system. To
explore how the network behaves in a more realistic setting,
especially in times of crisis when the system is changing
rapidly, we consider several uncertainty scenarios, described
in Section 4.

Unlike C, which is a systemic parameter, hi denotes the
individual health of bank i and is calculated as a function of
its indicators of solvency ci and liquiditymi:

hi = cimi, 0 < hi < 1,

mi =min 1,
AST
i + li
LSTi

,
2

where ci is the capital of bank i defined as a proportion of its
initial value; mi is the fraction of i’s short-term liabilities that
the bank can settle immediately, through its liquid and short-
term assets; AST

i is the total value of i’s short-term interbank
assets; LSTi is the total value of i’s short-term interbank liabil-
ities; and li is the amount of liquid assets held by bank i.

3.4. Decision Rules. The dynamics in the model are deter-
mined by decisions that banks make in discrete simulation
time. For each of its outgoing connections, a loan provider
can decide whether to shorten a long-term loan and whether
to withdraw a short-term loan. A lender can withdraw
short-term loans in a single decision, resulting in the connec-
tion between the two banks being removed immediately;
long-term loans can only be “shortened” in a single decision,
resulting in the connection between the banks becoming a
short-term loan. Thus, an eventual withdrawal of a long-
term loan requires an additional decision, i.e., time step (see
Appendix B). Depending on its maturity, a loan between two
banks i and j is, respectively, shortened and withdrawn when

hihj < 1 − C ,

hihj < 1 − C 2
3

If C is high (1 or close to 1), these conditions are satisfied
only under extreme conditions for hi and hj. In contrast, a
drop in C can cause liquidity hoarding, as both decision con-
ditions are more likely to be satisfied for all banks in the sys-
tem. In addition, the shortening condition is easier to satisfy
than the withdrawing condition, which means that banks
resort to withdrawal only in relatively urgent situations.

4. Model of Uncertainty

In interbank markets, business partners trade privately,
which often leads to a relationship with preferential treat-
ment and repeated transactions [32, 33]. Accordingly, in
our main uncertainty setting—the local information (LI)
scenario—we restricted information availability to the
nearby, that is, “local” banks in the banking network. This

makes banks highly sensitive to local events and insensitive
to events that take place further away in the network. Their
responsiveness is calibrated so that they do not take action
unless they notice signs of trouble in their locality; but when
they do, then their reaction is intense. As a reference to
models of complete information such as the AKM model,
we also consider delayed information (DI) and noisy infor-
mation (NI) scenarios, in which banks receive information
from all banks in the system, but information is either
delayed or noisy. For simplicity, details of the DI and NI
scenarios are presented in Appendix A. As described in Sec-
tion 3.3, the assumptions used in the AKM model are equiv-
alent to what we call the complete information (CI) scenario.

To model uncertainty and determine the amount of
information that is included in the calculation of
confidenceC, we rely on the distance between nodes in the
network. The distance d i, j is the shortest path length
between information user i and information source j. If
banks are directly connected, the distance between them is
1 and we call them neighbors. All neighbors of a particular
bank constitute its neighborhood. The distance between
neighbors of neighbors is 2 and so forth. The main principle
for modeling uncertainty is that information availability and/
or quality deteriorates when the distance from the informa-
tion source increases. Once uncertainty is introduced, instead
of one common estimate of confidence for all banks
(∀i Ci = C in the AKM model), each bank has its own indi-
vidual perception of confidence Ci.

We use the following notation template of any model

parameter P Ptime step optional ;observer
observed optional . For example, a0ij

denotes bank i’s judgment of j’s initial (0 time step) absolute
value of assets. Absence of the time step indicator implies
the current value of a parameter. The indicator of an
observed bank is omitted in the case of aggregate parame-
ters, such as C, which are not based on information of an
individual bank.

In the LI scenario, information is available only up to a
certain “interbank” distance. That is, bank i calculates C
based on the information about itself and all banks placed
within the fixed value of distance dmax. This is our general
definition of locality where the value of dmax determines
whether the locality includes only neighbors or also neigh-
bors of neighbors and so forth. For instance, if dmax = 1, then
only i and its immediate neighbors contribute information to
C. Now we can express the confidence of bank i as

Ci = AiEi,

Ai =
ai +∑j∈Ji dmax

aij
a0i

,

a0i = a0i + 〠
j∈J i dmax

a0ij ,

Ei =
ei +∑j∈J i dmax

eij
e0i

,

e0i = e0i + 〠
j∈Ji dmax

e0ij

4
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A set Ji dmax contains all banks that i considers for
estimation of C, except for i itself, and is a function of dmax.
It is useful to think of dmax as a parameter that determines
the reach of i’s perception. To define Ji dmax , we first define
the set J = 1, 2,… ,N , which contains all banks in the
network. Then, its subset Ji dmax is defined as

Ji dmax = j ∈ J d i, j ≤ dmax&j ≠ i 5

We consider two versions of the LI scenario (Figure 4):
LI1 in which dmax = 1 and LI2 in which dmax = 2. Since the
network is quite shallow (average path length is barely above
2), LI2 contains almost the full graph, and LI3 is equal to CI.
Thus, LI2 will provide a useful sanity check in respect to CI.

5. Model of Shocks and Bank Failures

Under each of the conditions described above, we simulated
the response of the system to an initial shock. We explored
two types of initial shock: (i) a concentrated shock (or a
single-bank shock), applied by randomly selecting a large or
a small bank and forcing it to fail by setting its capital to zero,
and (ii) a distributed shock (or a multiple-bank shock),
applied by forcing multiple small banks to fail simulta-
neously. The multiple-bank shock is designed to involve a
number of small banks whose aggregate assets are equivalent
to the assets of a large bank. Therefore, comparing these two
treatments can be informative about how the system
responds when the same shock is concentrated in a single
bank or distributed among multiple banks.

A bank can go bankrupt for both liquidity and solvency
reasons. A bank is illiquid if its liquid assets and interbank
loans are insufficient to meet the demand of other banks to
repay the loans previously taken from them. A bank is insol-
vent once the asset devaluation (from an external asset price
decrease or counterparty default, for instance) exceeds its
level of capital.

6. Simulation

In our simulation, each replication is a computational
experiment with two phases. The first phase is to form the
network and apply the initiating shock. The second phase is
to simulate the propagation of the shock through the
network, which unfolds in several iterations, here called
time steps.

To form the network, in- and out-degrees that determine
the numbers of banks’ incoming and outgoing links were
drawn from a Poisson distribution. (To design a network,
we first drew out-degrees from a Poisson distribution and
used this draw as weights for random sampling of corre-
sponding in-degrees. If both in- and out-degrees were drawn
directly from a Poisson distribution, the procedure would
require the random draw to be repeated until the sum of all
in-degrees is equal to the sum of corresponding out-
degrees. As a result, draws with nonmatching degrees would
have to be discarded, which is computationally expensive and
problematic for the purpose of the analytical analysis.) We
used a zero-truncated version of a Poisson distribution to

ensure positive values of interbank assets and liabilities,
which provided more balanced initial liquidity of banks.
Once in- and out-degrees were determined, it was possible
to reconstruct the rest of the bank’s balance sheets based
on the parameters of the model (see Section 3.2).

After the network was formed, a shock was applied. The
shock hit one or several randomly chosen banks, depending
on the type of shock to be applied. Then, the remaining
simulation procedure entailed iteration of actions that take
place in discrete time (see Appendix B).

7. Results

The results are based on 1,000 simulation replications per
scenario, with each replication lasting until the system came
to rest. Figure 5 depicts the probability distribution for the
total number of failed banks after a shock is applied to a
single small, a single large, and multiple small banks. In the

(a)

(b)

Figure 4: Information availability in the banking network of 120
banks in two local information (LI) scenarios: LI1 and LI2. In the
LI1 scenario (a), information is available up to distance 1 in the
network. That is, the bank in blue receives information only from
the orange banks—its immediate neighbors. In the LI2 scenario
(b), information is available up to distance 2. That is, the bank in
blue receives information not only from the orange banks but also
from the red banks—its neighbors of neighbors. The remaining
banks are colored in grey. The node size is weighted by its degree.
The network is constructed using the default values of model
parameters (Section 3.2).
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cases of a large-bank shock and amultiple-bank shock, the fat
tail of the distribution indicates that the entire system col-
lapses with a probability of nearly 20% and 30%, respectively.

When uncertainty is introduced, the highest impact
on the probability distributions of number of failed banks
is realized in the LI1 scenario. Figure 6 shows that the
probability of systemic breakdown (i.e., all banks in the
system fail) after a large-bank shock is now more than 90%
and that even a small-bank shock results in a nontrivial
probability of systemic breakdown (In high-resolution data
of 10,000 repetitions, the probability of whole-system break-
down after a small-bank shock increases from 0% in the CI
scenario to 0.16% in the LI1 scenario. This is easier to see

in Figure 7.), whereas the same probability drops to under
20% in the case of a multiple-bank shock.

Figure 7 displays a comparison of probabilities of
systemic breakdown across different scenarios in all three
shock treatments. The probabilities are consistently higher
in the multiple than in the single-shock treatment, except
for the LI1 scenario. In fact, the LI1 scenario, which is associ-
ated with the largest probability of systemic collapse in the
case of a large bank’s shock, is at the same time associated
with the smallest probability of systemic collapse in the
distributed shock condition.

The results of the LI1 scenario are particularly striking as
they show that a limited information flow further intensifies
the contagion dynamics observed in the AKM model after a
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Figure 5: Probability distribution of number of failed banks in the complete information (CI) scenario after a shock is applied to a small bank,
a large bank, and multiple small banks. The systemic breakdown occurs with sizable probability of nearly 20% and 30% after a large-bank
shock and multiple-bank shock, respectively.
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Figure 6: Probability distribution of number of failed banks in the
LI1 scenario after a shock is applied to a small bank, a large bank,
and multiple small banks. In comparison to the CI scenario, the
probability of systemic breakdown increases after both single-
bank-shock treatments, whereas it drops after multiple-bank
shock. LI1 is a scenario in which a bank has access only to
information from its direct neighbors at distance 1. LI = local
information; CI = complete information.

LI2Cl LI1
Scenarios

0

0.2

0.4

0.6

0.8

1
Pr

ob
ab

ili
ty

Small-bank shock
Large-bank shock
Multiple-bank shock

Figure 7: Probability of whole-system breakdown in complete
information (CI) and local information (LI) scenarios. The LI1
scenario obtains the highest probability of systemic breakdown in
both single-bank shock treatments. LI1 and LI2 = scenarios in
which banks have access only to information from banks up to
distance 1 and 2, respectively (Figure 15 in Appendix A displays
all scenarios).
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large-bank failure. At the same time, the LI1 scenario miti-
gates the impact of a multiple-bank shock when compared
to the CI scenario, in which this treatment in fact yields the
highest probability of systemic failure (Figure 7). While this
illustrates that the LI1 scenario does not merely amplify the
contagion dynamics, it also shows how an alternative
assumption about information availability can flip the
conclusion about which event is more likely to trigger
catastrophic failures.

In the following section, we mainly focus on explaining
the difference between the results obtained in the CI and
LI1 scenarios. Given the insignificant change in results
produced in the other manipulations (NI and DI scenarios;
Appendix A), we discuss those results very briefly.

8. Explaining the Results

In the CI scenario, confidence is assessed over the extent of
the whole system: although this captures the notion of a gen-
eralized psychological context, it also has the effect of diluting
the local impact of a shock. In the LI1 scenario, by contrast,
we have introduced the notion of “locally perceived” confi-
dence that can vary with the neighborhood of different banks.
The local impact of an initiating shock is therefore more
intense than in a CI scenario but limited to the neighbor-
hood, leaving the confidence of the remaining system initially
intact. Yet, this local impact is subsequently transmitted
through the system (analogous to the dynamics of crack
propagation in a solid medium), resulting overall in a higher
risk of system collapse than in the CI scenario. The similarity
of the results of the LI2 and CI scenarios (Figure 7) provides a
useful sanity check, as the portion of the system taken into
account for the confidence estimation is minimally different
in the two scenarios (Figure 4).

A similar rationale applies to the results of the distributed
shock treatment, which involves a failure of multiple small
banks. While the impacts of the small-bank failures on
confidence “add up” in the CI scenario, irrespective of their
placement, in the LI1 scenario, they independently harm
confidences of the disparate localities in which they
randomly fall. As a result, the probability of whole-system
failure after a distributed shock in LI1 is noticeably reduced
when compared with the CI scenario (Figure 7). That the
“adding-up effect” is less prominent in the LI1 scenario can
also be seen by contrasting the results obtained from CI
and LI1 after small idiosyncratic and multiple-bank treat-
ments. For this purpose, it is useful to interpret a multiple
shock as adding extra instances of small shocks to a small
shock. The resulting pattern is somewhat counterintuitive.
While a small-bank shock alone leads to a higher probability
of systemic failure in the LI1 scenario (than in the CI sce-
nario), after multiple shocks, the system fails with a higher
probability in the CI scenario.

To better understand how the dynamics of C affect the
discrepancy in the results between the CI and LI1 scenarios,
we conducted a further analysis to assess the portion of the
system that is initially affected by the shock applied in LI1
scenario, the magnitude of C drop that corresponds to the
applied shock, and the sensitivity of the system to different

manners in which C can deteriorate. Finally, we compared
the time course of C obtained in computational simulations
in the two scenarios and designed tests to assess if the
observed difference can explain the results.

8.1. Dynamics of Local Confidence. The only distinction
between the CI and LI1 scenarios corresponds to the differ-
ence in confidence contexts in which banks’ decisions are
made. Given the complexity of confidence dynamics, we
aimed to compare the two scenarios in terms of initial confi-
dence effects caused by the applied shock. Then, we analyzed
if the initial difference could account for the results. We
focused on the impact of the large-bank shock, which is
associated with the most striking contrast between the two
scenarios, but the same rationale applies to the small-bank
shock. In the CI scenario, to calculate C1 (the level of C in
the immediate aftermath of the shock), one needs to know
only the number of small Ns and large Nb banks as well as
the size ratio q. Then, from C = AE, it follows that

C1 =
qNs +Ns − q
qNb +Ns

2
6

For the default values of the model parameters, C1 ≈ 0 92,
which corresponds to the drop of C for approximately 0 08.
Unlike CI scenario where confidence effects are uniformly
distributed among all banks, in the LI1 scenario, the shock
initially affects only the confidence of banks in the neighbor-
hood of the shock. The assessment of the fraction of banks
affected by the shock, therefore, requires the estimation of
the size of “average-bank neighborhood”—that is, the
expected number of unique large and small banks that are
connected to a given bank, including only its borrowers and
lenders (Figure 8).

For default values of model parameters, a large bank is on
average connected to 40 small and 10 large banks, whereas a
small bank is connected to 4 large and 5 small banks (for the
proof see Appendix C). This implies that the large-bank
shock on average affects approximately three-quarters of
the system assets; and among affected banks, large banks
experience a decline of confidence to C1

b ≈ 0 87 and small
banks to C1

s ≈ 0 61. The faster decline of confidence of small
banks is both intuitive because the average-bank neighbor-
hood of a small bank is relatively smaller, and realistic,
because it is to be expected that a smaller bank suffers larger
confidence loss when faced with a shock of a given size. In
what follows, we describe a test designed for the assessment
of system sensitivity to the steepness of C decline.

8.2. Test 1—System Sensitivity to the Loss of Confidence. How
does the system behave under different C regimes? To inves-
tigate this, we externally enforced different time courses of C
while keeping the assumption that all banks share the same C.
(This means that C is no longer endogenously determined
from the fluctuation of asset levels.) The independent manip-
ulation was designed to test the resistance of the system to a
variety of hypothetical confidence contexts. The goal was to
explore how the system responds if only the perception of
decision makers is manipulated, while keeping all remaining
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processes endogenous. We considered different magnitudes
of C drop and for each of them we also manipulated the slope
of decline. We used the exponential function f x = e−rx to
model the slope manipulation, where the value of parameter
r determines the slope (Figure 9).

Figure 10 shows that the sudden drop of C (r = 100) has
by far the highest impact on the system. This is a strong indi-
cation that the quicker loss of confidence in the LI1 scenario
as compared to the CI scenario played a role in the increase in
systemic risk. In addition, we compared standard deviations
of confidence across the scenarios (Figure 11). The standard
deviations of the end-state confidence (when the system is
at rest) were calculated across 1000 simulation replications,
taking into account only the surviving population of banks.
Two results stood out. First, standard deviations of confi-
dence were consistently higher after the large concentrated
shock than after the distributed shock. The immediate impli-
cation is that the outcome of a large concentrated shock is
less predictable. Second, there was a large difference between
the standard deviations of confidence in the CI and LI1 sce-
narios. To determine if this contributed to the difference in
the corresponding results, we carried out an analysis of the
variance of confidence, described next.

8.3. Test 2—Variance of Confidence. The goal of this test was
to assess the sensitivity of total assets A and total interbank
loans E to the change in variance of C. A realization of C in
a simulation replication is in fact a vector C t , which con-
tains values of C at different time steps. The manipulation
first entailed construction of two vectors C t iCI

and C t iLI1
based on data from realizations of C in the CI and LI1 scenar-
ios when a large-bank shock is applied. Two newly composed
time sequences of C values were generated from a normal
distribution with the same mean and two variances: C t iCI

~N CAV
i , VCI

i and C t iLI1
~N CAV

i , VLI1
i . The mean CAV

i

was estimated by averaging the confidence from the realiza-
tion of the CI scenario over simulation repetitions. The first
variance, VCI

i , was calculated from vectors of global confi-
dence realized in the CI scenario and the second, VLI1

i , from
vectors of local confidence realized in the LI1 scenario.
Finally, the two vectors C t iCI

and C t iLI1
were exogenously

applied to the CI setting of the simulation (Figure 12). The
exogenous application of confidence implies that the
calculation of confidence is decoupled from assets and
interbank loans in the actual simulation and taken as given.
The sequences of realized networks were controlled to be
the same in both conditions by setting the same seeding
of the random number generator in the simulation C

t iCI
~N CAV

i , VCI
i .

Even when the mean of C over simulation replications is
kept constant, as Figure 12 illustrates, a higher variance of C
yields a faster drop of total assets A. Given that assets deter-
mine the level of C by definition, we designed an additional
test to assess the impact of the time course of C on the results.

8.4. Test 3—Time Course of Confidence. For this purpose, the
mean of individual confidences of all banks in the LI1

(a)

(b)

Figure 8: Neighborhood of a small bank (a) and a large bank (b) in
the banking network of 120 banks. The small (large) bank is colored
in blue, whereas its immediate neighbors are colored in orange. The
remaining banks are colored in grey. The node size is weighted by its
degree. The network is constructed using the default values of model
parameters (Section 3.2).
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Figure 9: Manipulation of confidence C change over time: C
drops 20, 30, or 40%, with the slope of decline determined by the
parameter r of the exponential function f x = e−rx ; the higher r,
the steeper the slope of C decline. Time step refers to discrete
simulation time where each step iterates a defined set of actions
(see Appendix B). Note: the observed time horizon is extended
from 100 to 150 time steps, as additional time steps were needed
for the system to reach the steady state when the slope of C
decline was low (r = 1).
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scenario was calculated and denoted as local confidence.
Confidence calculated according to the standard procedure,
as in the CI scenario, was denoted global confidence.
Figure 13 indicates a steeper decline of local as compared to
global confidence when corresponding simulations were
performed in an identical simulation setting, that is, when
the identically placed large-bank shock was applied to an
identical set of networks by controlling the seeding of the
random number generator in the simulation.

In the next step, we estimated the impact of the observed
slope difference between the two C curves by exogenous

application of the local confidence to a hypothetical CI
scenario together with the large-bank shock treatment. In
the hypothetical scenario, as in the standard CI scenario, all
banks in the system perceive confidence equally, but their
perception is no longer endogenously determined. Instead,
we forced their global confidence to be equal to previously
determined local confidence taken from the realization of
the LI1 scenario depicted in Figure 13. This procedure
yielded a probability of over 90% of the whole system failing,
a result similar to that in the LI1 scenario (Figure 14). The
decline of confidence is therefore capable of explaining the
difference in the results between the scenarios.
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Figure 10: Probability of systemic breakdown for various magnitudes and speeds of confidence (C) decline. The magnitude of decline refers
to the percentage of the initial value of C that is lost. The speed of decline is determined by the parameter r of the exponential function
f x = e−rx ; the greater the value of r, the greater the speed of C decline. The sudden decline of C (r = 100) is associated with a sharp increase
in the probability of systemic breakdown, especially in the cases of 20% and 30% of C decline.
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Figure 11: Standard deviation of confidence across complete
information (CI) and local information (LI) scenarios and three
shock treatments: to a small bank, a large bank, and multiple
small banks. The LI1 scenario inflates standard deviations of
confidence in both single-bank-shock treatments. The multiple-
bank treatment involves a number of small banks whose total
assets amount to the assets of a single large bank. LI1 and
LI2 = scenarios in which a bank has access only to information
from banks up to distance 1 and 2, respectively (Figure 16 in
Appendix A displays all scenarios).
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Figure 12: The impact of exogenous manipulation of confidence
C on the level of total assets (A) in the system. Two applied
manipulations of C follow normal distribution with the same
mean and different variances: VCI

i [derived from the complete
information (CI) scenario] and VLI1

i [derived from the local
information (LI) LI1 scenario]. The higher variance corresponds
to the faster decline of total assets in the system. CI is a scenario
in which a bank has access to information from all other banks in
the network. LI1 is a scenario in which a bank has access only to
information from banks at distance 1.
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9. Discussion

The increasing interconnectedness of the global financial
network has introduced an enormous amount of structural
uncertainty in the financial system. Yet, its implications went
unnoticed until the recent financial crisis when the interde-
pendencies in the network made it nearly impossible to
disentangle low- from high-risk investments and partner-
ships. In this paper, we presented a model where structural
uncertainty shapes patterns of confidence loss in a financial
network. We found that a severe confidence loss in a limited

part of the network carries a higher systemic risk than a
moderate confidence loss in the entire network.

Our use of a multiagent model allowed us to analyze
more specific aspects of confidence decline and to consider
different types of shocks that can affect the system. We found
that while the magnitude of decline was important, as was
expected, a sudden decline of confidence was also a major
factor in the increase in systemic risk; when the average level
of confidence was controlled for, higher variance of confi-
dence corresponded to higher systemic risk. We also found
that under uncertainty, a shock affecting one large bank
was by far more impactful than the same shock distributed
among multiple smaller banks; when complete information
was assumed, the opposite was true. This suggests that it
is the failure of a large bank that poses a major threat to
the system.

One caveat of our work is that there is a lack of
understanding of how banks react to structural uncer-
tainty during a financial crisis. Here we assumed that in
a crisis, when it is infeasible to assess relevant risks, banks
emphasize the information that they observe in their local
environment. An alternative view explored in the litera-
ture assumes that banks maintain the practices developed
prior to the crisis and rely on their own assessment of
relevant risks (e.g., [28]). However, such an assessment
would require the knowledge of the underlying structure
of the financial network, which is exactly unavailable
under structural uncertainty. Moreover, a possible exten-
sion of our work would be to explore how structural
uncertainly interacts with other sources of uncertainty,
such as uncertainty about the value of assets [34], in
hoarding behavior.

From the view of policymaking, our observed sensitivity
of the system to sudden loss of confidence suggests that inter-
ventions, such as bailouts of distressed banks or liquidity
injections, should be done without delay. Our results also
confirm previous findings that large banks carry dispropor-
tionate amount of systemic risk and hence are more likely
to require stricter regulations than what was previously
assumed. More generally, our results indicate the need for
regulation designed to improve overall transparency in the
financial system. For instance, policies that aim at reducing
and eventually eliminating over-the-counter markets or con-
straining the complexity of financial contracts would be
highly desirable. Only a transparent financial system would
allow banks to make sound decisions from the perspective
of systemic risk.

Appendix

A. Delayed Information and Noisy
Information Scenarios

Unlike in the LI scenarios, in the DI scenarios banks receive
information from all other banks in the system (dmax is no
longer exogenously set), but some of the information is
outdated. We modeled information delay as a function of
distance—the further the information source, the longer the
delay. If k denotes the time step when information originated,
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Figure 13: Time course of global and local confidence. Global
confidence is calculated in a standard way as in the complete
information (CI) scenario. Local confidence is an average of
individual confidences of all banks in the local information (LI)
LI1 scenario. CI is a scenario in which a bank has access to
information from all other banks in the network. LI1 is a scenario
in which a bank has access only to information from banks at
distance 1.
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Figure 14: A comparison of probability distributions of number of
failed banks after a large-bank shock in the LI1 scenario, and
scenario in which confidence from the LI1 scenario was
exogenously applied to the CI scenario. The probability of
systemic breakdown is nearly the same in both scenarios. CI is a
scenario in which a bank has access to information from all other
banks in the network. LI1 is a scenario in which a bank has access
only to information from its direct neighbors at distance 1.
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t the time step in which it is received, ds the distance at which
delay starts, and s the size of applied delay, then

We designed four variants of the DI scenario by manipu-
lating s and ds (Table 1). For instance, in the DI1 and DI3 sce-
narios, the size of the delay is 1 time step (s=1), and in the
DI2 and DI4 it is 2 time steps (s=2). In the DI1 and DI2 sce-
narios, delay starts from neighbors of neighbors (ds=2),
whereas in the DI3 and DI4 scenarios, it starts immediately
from neighbors (ds=1). We set the minimum value of k
to 0 since negative values of time do not make sense in
this context.

In the NI scenario, noise in information increases with
distance. If ∈ denotes a random error with normal distribu-
tion ∈ ~N 0, σ2 , v the size of variance in the noise term,
and dmax maximal distance in the network, then

aij = ajj + d ∈ , d i, j = 1, 2,… , dmax, σ2 = vajj

eij = ejj + d ∈ , d i, j = 1, 2,… , dmax, σ2 = vejj

A 2

We considered two variants of the NI scenario: NI5 and
NI30. In the former, v=5% and in the latter, v=30%.

Regardless of the amount of noise, the NI scenarios yield
similar results to those of the CI scenario. In the case of the
DI scenarios, although the impact is very small the probabil-
ities of systemic failure increase with delay. This is particu-
larly noticeable in the nonzero probabilities of systemic
failure after a small-bank shock. In the NI scenarios, nor-
mally distributed noise averaged out across banks, producing
no difference in results compared to the CI scenario
(Figures 15 and 16). Assuming an alternative distribution of
noise would potentially produce more interesting results.
On the other hand, the DI scenarios indicate that the delay
matters. The result can be accounted for as the effect of over-
confidence. Namely, in the DI scenarios, confidence at a

particular moment in time was higher than what actual infor-
mation would imply. This narrows the time window for the
preemptive action that would enable shortening of long-
term loans, which otherwise could not be used to meet the
upcoming liquidity needs.

B. Simulation Procedure over Time Steps

After the application of the shock, the simulation procedure
entailed five actions taking place in each time step:

(1) Recalculate health hi of all banks. The health is used
for stipulating liquidation of banks. Zero health
implies that a bank needs to be liquidated.

(2) Liquidate banks that failed in the previous time
step (or those that failed because of the initial shock).
If bank i is to be liquidated then the procedure is
as follows:

(a) Withdraw all short-term loans AST
i that can be

collected from the borrowers of i. Triggering the
collection procedure means that i’s borrowers
will ask their own borrowers for money, and so
forth. Record banks that consequently satisfy
the condition of illiquidity and are to be liqui-
dated in the next time step.

(b) Settle all short-term borrowings LSTi of bank i
that can be paid from its initial liquid assets li
and collected short-term loans AST

i. Record the
resulting shortage or surplus.

(c) Calculate the total long-term assets of i by add-
ing long-term loans to the capital ci. To this
sum add the result from substep b. If there is a
shortage of assets when the sum is compared to

Table 1: The size of delay in time steps assigned to banks at different distance in different scenarios.

Scenario
Size of delay

0 1 2

DI1 i+ neighbors All remaining banks

DI2 i+ neighbors All remaining banks

DI3 i All remaining banks

DI4 i All remaining banks

Note: DI = Delayed information; i = information user.

aji = akji , eji = ekji

k =
t if d < ds

max 0, t − s if d < ds
, d i, j ∈ 1, 2… dmax , ds ∈ 1, 2 , s ∈ 1, 2

A 1
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long-term liabilities of i, then i’s long-term
lenders suffer from this amount of shock u
applied to their capital. The shock is evenly dis-
tributed among the lenders, but only up to the
level of individual exposures. This ensures that
the shock cannot exceed the level of individual
lending amount.

(d) Sell external assets of i, applying the shock to all
holders of the same asset classes that i had in its
portfolio. The external assets are sold at a market
that is taken to be external to the model. The
price of asset w is assumed to be decreasing to a
fraction exp(−αxw) of its initial value (modeled
as in Arinaminpathy et al., 2012), in which xw is
a proportion of the asset w that is sold by i, and
α is an indicator of market liquidity that is
directly related to confidence C, α=1−C. If any
bank suffers from the capital default based on
the shocks from substeps c and d, its health once
it is recalculated will be 0. This automatically
qualifies such banks for liquidation in the next
time step.

(3) Apply decision rule 2 (see Section 3.4) and withdraw
short-term loans if condition is satisfied. It is
assumed that loans are perfectly divisible and partial
withdrawals are possible. Then, record all banks that
become illiquid during the withdrawal in order to be
liquidated in the next time step. Note that the second
decision rule is applied first as otherwise it would
be possible to withdraw long-term loans in a single
time step.

(4) Apply decision rule 1 (see Section 3.4) and admin-
ister shortening of long-term loans if the condition
is satisfied.

(5) Recalculate the network and other parameters and go
back to step 1 for the next time step.

C. Calculation of the Size of an
Average–Bank Neighborhood

In the main text, we stated that the size of a particular bank
neighborhood is probabilistic. Here, we provide a simple
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Figure 15: Probability of systemic failure across all scenarios. CI =Complete information; LI = local information; NI = noisy information;
DI = delayed information; LI1 and LI2 = scenarios in which banks have access only to information at distance 1 and 2, respectively; NI5
and NI30 = scenarios in which noise parameter v is 5% and 30%, respectively; the delay scenarios are defined in Table 1.
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Figure 16: Standard deviations of confidence across all scenarios and three shock treatments: to a small bank, a large bank, and multiple
banks. CI =Complete information; LI = local information; NI = noisy information; DI = delayed information; LI1 and LI2 = scenarios in
which a bank has access only to information at distance 1 and 2, respectively. NI5 and NI30 = scenarios in which noise parameter v is 5%
and 30%, respectively. The delay scenarios are defined in Table 1.
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calculation of the size of an average-bank neighborhood for a
small and a large bank.

Let us consider a network of N banks, of which Ns are
small andNb are large. Let L be the out-degree of a small bank
and q be the ratio of average degree of a large bank over aver-
age degree of a small bank. In the main text we assumed that
in- and out-degrees of all banks are drawn independently
from a Poisson distribution with mean z for small and qz
for large banks. Here, we make a simplifying assumption that
out-degrees of all small (large) banks are equal. When tested
in a simulation this assumption did not change our previ-
ously reported results. To determine the size of an average-
bank neighborhood of a bank i, which includes i’s borrowers
and lenders, we have to calculate the expected number of
unique small and large banks connected to i. For this pur-
pose, let us define random variables:

X ij =
1 if there is a directed connection from i to j

0 otherwise

Xij =
1 if there is a connection between i to j

0 otherwise
C 1

with the correspondence Xij =max X ij , X ji . From here it

follows that

E Xij = 1P Xij = 1 + 0P Xij = 0
= P Xij = 1 = 1 − P Xij = 0

C 2

Given there are small and large banks in the system, there
are three cases: one bank is small and another is large, both
banks are small, and both banks are large.

Case 1. Both banks (i and j) are small.

The probability that a connection originating from i goes
to j is a fraction of the in-degree of j and the total in-degree of
all banks in the network except for i:

wss
ij =

L
Ns − 1 L + qNbL

=
1

Ns − 1 + qNb
C 3

From Equations C.4 and C.13 it follows that the probabil-
ity that there is at least one connection from i to j is

P X ij = 1 = 1 − P X ij = 0 = 1 − 1 −wss
ij

L
, C 4

where 1 −wss
ij

L is the probability that none of L outgoing
links of i connect to j (note that the probabilities of connec-
tions are independent).

Then, the probability that there is at least one connection
between i and j irrespective of the direction is

P Xij = 1 = P X ij = 1 ∪ X ji = 1

= P X ij = 1 + P X ji = 1

− P X ij = 1 ∩ X ji = 1

= 2P X ij = 1 − P2 X ij = 1

∵P X ij = P X ji &X ij∐X ji

= P X ij = 1 2 − P X ij = 1

= 1 − 1 −wss
ij

L
1 + 1 −wss

ij

L

= 1 − 1 −wss
ij

2L

C 5

We can now express the expectation of Ys
i , which is the

number of unique small banks connected to i, as:

E Ys
i L = 〠

Ns−1

i=1
P Xij = 1 L = Ns − 1 1 − 1 −wss

ij

2L

C 6

Case 2. One bank is small and another is large.

Case 2a. i is a small and j is a large bank.

The probability that a connection originating from i goes
to j is

wsb
ij = qwss

ij =
q

Ns − 1 + qNb
C 7

The probability that there is at least one connection from
i to j is

P X ij = 1 = 1 − P X ij = 0 = 1 − 1 −wsb
ij

L
C 8

Case 2b. i is a large and j is a small bank.

The probability that a connection originating from i goes
to j is

wbs
ij =

L
NsL + q Nb − 1 L

=
1

Ns + q Nb − 1
C 9

Similarly to Case 2a, it follows that

P X ij = 1 = 1 − P X ij = 0 = 1 − 1 −wbs
ij

qL
C 10
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From Case 2a and Case 2b we derive the probability that
there is at least one connection between i and j irrespective of
the direction:

P Xij = 1 = P X ij = 1 ∪ X ji = 1

= P X ij = 1 + P X ji = 1

− P X ij = 1 P X ji = 1

= 2 − 1 −wsb
ij

L
− 1 −wbs

ij

qL

− 1 − 1 −wsb
ij

L
1 − 1 −wbs

ij

qL

C 11

Then, the expectations for the number of unique large
banks connected to a small bank i (Case 2a) and the num-
ber of unique small banks connected to a large bank i
(Case 2b) are

E Yb
i L = 〠

Nb

i=1
P Xij = 1 L

=Nb 2 − 1 −wsb
ij

L
− 1 −wbs

ij

qL

− 1 − 1 −wsb
ij

L
1 − 1 −wbs

ij

qL
,

E Ys
i L = 〠

Ns

i=1
P Xij = 1 L

=Ns 2 − 1 −wsb
ij

L
− 1 −wbs

ij

qL

− 1 − 1 −wsb
ij

L
1 − 1 −wbs

ij

qL

C 12

Case 3. Both banks (i and j) are large.

The probability that a connection originating from i goes
to j is

wbb
ij = qwbs

ij =
q

Ns + q Nb − 1
C 13

The probability that there is at least one connection from
i to j is

P X ij = 1 = 1 − P X ij = 0 = 1 − 1 −wbb
ij

qL
C 14

Similarly to the previous cases, it follows that

P Xij = 1 = P X ij = 1 ∪ X ji = 1

= P X ij = 1 2 − P X ij = 1

= 1 − 1 −wbb
ij

2qL

C 15

The expectation of the number of unique large banks
connected to a large bank i is

E Yb
i L = 〠

Nb−1

i=1
P Xij = 1 L = Nb − 1 1 − 1 −wbb

ij

2qL

C 16
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